Шестимерное пространство — это любое пространство, имеющее шесть измерений и шесть степеней свободы. Для определения местоположения в этом пространстве необходимы шесть элементов данных или координат. Их бесчисленное множество, но наиболее интересны те, которые моделируют конкретный аспект окружающей среды. Особый интерес представляет шестимерное евклидово пространство, в котором построены 6-многогранники и 5-сфера. Кроме того, также рассматриваются шестимерная эллиптическая геометрия | эллиптические пространства и гиперболическое пространство | гиперболические пространства с постоянной положительной и отрицательной кривизной.
В общем, любое пространство, которое можно локально описать шестью системами координат, которые, в свою очередь, не обязательно являются евклидовыми, является шестимерным. Примером этого является поверхность 6-сферы ''S''6 . Это набор всех точек евклидова семимерного пространства (\mathbb{R}^{7}), которые находятся на фиксированном расстоянии от начала координат. Это ограничение уменьшает количество координат, необходимых для описания точки на шестимерной сфере, на одну, делая ее шестимерной. Такая неевклидова геометрия | неевклидовы пространства гораздо более распространены, чем евклидовы пространства; в шести измерениях у них гораздо больше применений.
Подробнее: https://de.wikipedia.org/wiki/Sechsdimensionaler_Raum
Шестимерное пространство ⇐ Васина Википедия
-
Автор темыwiki_de
- Всего сообщений: 49252
- Зарегистрирован: 13.01.2023
-
Вик
Re: Шестимерное пространство
Извините, Вы написали, что это такая система, которую можно описать шестью системами координат. Трехмереое пространство - это такое, которое точку в котором можно описать тремя координатами в трехмерной системе координат. Но что значит описание шестью (разными?) системами координат?
-
- Похожие темы
- Ответы
- Просмотры
- Последнее сообщение
Мобильная версия